The Severity of Pandemic H1N1 Influenza in the US, from April to July 2009: A Bayesian Analysis

A.M. Presanis et al. (2009)
PLoS Medicine, 6, e1000207

Katarina Matthes
Biostatistics Journal Club
Zurich, 30 May 2012
Outline

1. Motivation
2. Data
3. Methods
4. Results
5. Discussion
6. Conclusion
Motivation: Background

- every winter millions of people catch influenza and half a million die
- seasonal epidemics occur because small but frequent changes in the virus occur
- March 2009 new virus called "pandemic H1N1/09" ("Swine flu") occurred at first in Mexico and spread rapidly
- risk for global epidemics (pandemics) that kill millions of people (e.g. the "Spanish flu" 1918)
Why was the study done?

- autumn and return of children to school after summer break help to spread influenza
- H1N1 cases, hospitalizations and deaths in the Northern Hemisphere have greatly increased
- the impact on human health is unknown
- accurate measurements are needed to estimate the severity of the infection and the impact in an upcoming autumn-winter pandemic wave
Measures of severity of infections

- many people are infected but do not show symptoms
- many people who get an ILI (influenza-like illness) are not going to see any medical professional
- serological surveys were not available
Measures of severity of infections

- many people are infected but do not show symptoms
- many people who get an ILI (influenza-like illness) are not going to see any medical professional
- serological surveys were not available

-> it is not that easy to estimate case-severity ratios
Measures of severity of infections

- many people are infected but do not show symptoms
- many people who get an ILI (influenza-like illness) are not going to see any medical professional
- serological surveys were not available

-> it is not that easy to estimate case-severity ratios

-> instead: focus on symptomatic cases
Symptomatic case severity ratios

- **sCHR** symptomatic case-hospitalization ratio (the proportion of symptomatic cases that result in hospitalization)

- **sCIR** symptomatic case-intensive care ratio (the proportion of symptomatic cases that require treatment in an ICU (intensive care unit))

- **sCFR** symptomatic case-fatality ratio (the proportion of symptomatic cases that result in death)
Data

Milwaukee

- April 27 - May 20 testing persons with influenza symptoms by using a RT-PCR (reverse transcriptase polymerase chain reaction) test specific for H1N1
 -> medically attended, hospitalized, ICU-admitted and death data

- May 21 - June 14 reduced testing of mild cases
 -> only hospitalized, ICU-admitted and death data were used
Data

Milwaukee

- April 27 - May 20 testing persons with influenza symptoms by using a RT-PCR (reverse transcriptase polymerase chain reaction) test specific for H1N1
 -> medically attended, hospitalized, ICU-admitted and death data

- May 21 - June 14 reduced testing of mild cases
 -> hospitalized, ICU-admitted and death data were used

New York

- April 26 - July 7 testing hospitalized patients with ILI by using a rapid influenza antigen test

- patients who were tested positive and all ICU patients were tested by RT-PCR
Telephone Survey Data

New York

- May 20 - May 27 1.006 surveys
- June 15 - June 19 1.010 surveys
- random-digit dialing
- non-randomized individual was interviewed
- provided information about ILI of all household members
Telephone Survey Data

New York

- May 20 - May 27 1.006 surveys
- June 15 - June 19 1.010 surveys
- random-digit dialing
- non-randomized individual was interviewed
- provided information about ILI of all household members

CDC - Center for Disease Control and Prevention

- May 2009 in 11 US states
- Survey from 2007 was used as a template to conduct a survey about ILI [Reed et al., 2009]
<table>
<thead>
<tr>
<th>Location</th>
<th>Age Group</th>
<th>Severity</th>
<th>Medically Attended</th>
<th>Hospitalized to May 20</th>
<th>Hospitalized to June 14</th>
<th>ICU-Admitted to June 14</th>
<th>Dead to June 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milwaukee</td>
<td>0-4</td>
<td>126</td>
<td>7</td>
<td>27</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-17</td>
<td>470</td>
<td>6</td>
<td>29</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-64</td>
<td>189</td>
<td>12</td>
<td>87</td>
<td>14</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>788</td>
<td>25</td>
<td>147</td>
<td>27</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>0-4</td>
<td>—</td>
<td>225</td>
<td></td>
<td>44</td>
<td>2 / 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-17</td>
<td>—</td>
<td>197</td>
<td></td>
<td>51</td>
<td>2 / 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-64</td>
<td>—</td>
<td>518</td>
<td></td>
<td>147</td>
<td>46 / 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65+</td>
<td>—</td>
<td>56</td>
<td></td>
<td>15</td>
<td>3 / 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>—</td>
<td>996</td>
<td></td>
<td>257</td>
<td>53 / 9</td>
<td></td>
</tr>
</tbody>
</table>

Table: Cases at each level of severity
Methods

- Bayesian evidence synthesis framework: to combine information and uncertainty about each level of severity into a single estimate
- two different approaches
- each provides estimates for the general population and for age groups 0-4, 5-17, 18-64, 65+
Model

APPROACH 1
- New York
- Milwaukee
- CDC surveys
 - Medically attended
 - Symptomatic
 - Serologically infected

APPROACH 2
- New York deaths
- sCFR
- New York ILI self-reports

Figure: Diagram of two approaches to estimating the sCFR
Model(II)

Figure: Bayesian model to synthesise severity data
Observation model

- the observations are related to the true numbers N and the detection probabilities

- $O_{iM} \sim Binomial(N_{iM}, d_M)$
- $O_{iHk} \sim Binomial(N_{iHk}, d_{Hk})$
- $O_{iIk} \sim Binomial(N_{iIk}, d_{Ik})$
- $O_{iDk} \sim Binomial(N_{iDk}, d_{Dk})$

i: age group
M: medically attended
H: hospitalized
I: ICU
D: death
k: Milwaukee or New York
Case-severity ratios

Conditional probabilities

Number of cases by severity

Detection probabilities

Observed cases
Detection probabilities

- probability of performing a test \(\times \) sensitivity of the test
- \(d_{MW}, d_{Hk}, d_{Ik}, d_{Dk} \)

Example: detection probability for medically attended in Milwaukee

\[d_{MW} = d_{MW1} \times d_{MW2} \]

\(d_{MW1} = \) the probability of performing a test \(\sim \) Uniform(0.2, 0.35)

\(\rightarrow \) CDC Data

\(d_{MW2} = \) sensitivity of the RT-PCR-test \(\sim \) Uniform(0.95, 1)

\(\rightarrow \) Assumption
Case-severity ratios

Conditional probabilities

Number of cases by severity

Detection probabilities

Observed cases
True number of persons at each level of severity

Approach 1

\[N_{iMk} \sim \text{Binomial}(N_{iSk}, c_{iM}|S) \]
\[N_{iHk} \sim \text{Binomial}(N_{iMk}, c_{iH}|M) \]
\[N_{iIk} \sim \text{Binomial}(N_{iHk}, c_{iI}|H) \]
\[N_{iD,Hk} \sim \text{Binomial}(N_{iHk}, c_{iD}|H) \]
\[N_{iD,Hk} \sim \text{Binomial}(N_{iMk}, c_{iD,H}|M) \]
\[N_{iSW} \sim \text{Uniform}(O_{iMW}, 0.25 \times \text{popn}_{iW}) \]
\[N_{iSN} \sim \text{Uniform}(0, \text{upper}_{iN} \times \text{popn}_{iN}) \]
\[\text{upper}_{iN} \sim \text{Beta}(\cdot) \]

Approach 2

-
\[N_{iH} \sim \text{Binomial}(N_{iS}, c_{iH}|S) \]
\[N_{iI} \sim \text{Binomial}(N_{iH}, c_{iI}|H) \]
\[N_{iD,H} \sim \text{Binomial}(N_{iH}, c_{iD}|H) \]
\[N_{iD,H} \sim \text{Binomial}(N_{iS}, c_{iD,H}|S) \]
-
\[N_{iS} \sim \text{Binomial}(\text{popn}_{iN}, c_{iS}|P) \]
\[c_{iS}|P \sim \text{Beta}(\cdot) \]
Case-severity ratios

Conditional probabilities

Number of cases by severity

Detection probabilities

Observed cases
Conditional probabilities - Approach 1

\[c_D|S = P\{\text{death} \mid \text{symptoms}\} \]
\[= P\{\text{death among hospitalized, death among medically attended but not hospitalized} \mid \text{symptoms}\} \]
\[= c_D|H \cdot c_H|M \cdot c_M|S + c_D, \overline{H}|M \cdot c_M|S \]

- similar \(c_I|S, c_H|S \)
- \(c_D|H, c_I|H, c_H|M, c_D, \overline{H}|M \sim Beta() \), very shallow Beta distributions (probabilities of true H1N1 deaths, ICU and hospitalizations given the previous severity)
- \(c_M|S \sim Beta(51.5, 48.5) \) (prior from CDC-Data)
Conditional probabilities - Approach 2

- medically attended level is not considered

- \(c_D|S = c_D|H \cdot c_H|S + c_D, \overline{H}|S \)

- \(c_I|S = c_I|H \cdot c_H|S \)
Case-severity ratios

Conditional probabilities

Number of cases by severity

Detection probabilities

Observed cases
unknown parameters $\theta = (c_{ij}, d_{ij}, N_{ijk}, s\text{CHR}, s\text{CIR}, s\text{CFR})$

known $O = O_{ij}$

$P(\theta | O) \propto P(\theta) L(O | \theta)$

OpenBUGS

MCMC was used to obtain samples from the posterior distribution

three chains of 1,000,000 iterations including 800,000 burn-ins
Results: Estimates for the sCFR, sCIR, sCHR - Approach 1

<table>
<thead>
<tr>
<th>Age</th>
<th>sCFR</th>
<th>sCIR</th>
<th>sCHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>0.026% (0.006%–0.092%)</td>
<td>0.321% (0.133%–0.776%)</td>
<td>2.45% (1.10%–5.56%)</td>
</tr>
<tr>
<td>5–17</td>
<td>0.010% (0.003%–0.031%)</td>
<td>0.106% (0.043%–0.244%)</td>
<td>0.61% (0.27%–1.34%)</td>
</tr>
<tr>
<td>18–64</td>
<td>0.159% (0.066%–0.333%)</td>
<td>0.542% (0.230%–1.090%)</td>
<td>3.00% (1.35%–5.92%)</td>
</tr>
<tr>
<td>65+</td>
<td>0.090% (0.008%–1.471%)</td>
<td>0.327% (0.035%–4.711%)</td>
<td>1.84% (0.21%–25.38%)</td>
</tr>
<tr>
<td>Total</td>
<td>0.048% (0.026%–0.096%)</td>
<td>0.239% (0.134%–0.458%)</td>
<td>1.44% (0.83%–2.64%)</td>
</tr>
</tbody>
</table>

Table: Posterior median (95% CI) estimates of the sCFR, sCIR, and sCHR, by age group, based on a combination of data from New York City and Milwaukee, and survey data on the frequency of medical attendance for symptomatic cases.
Estimates for the sCFR, sCIR, sCHR - Approach 2

<table>
<thead>
<tr>
<th>Age</th>
<th>sCFR</th>
<th>sCIR</th>
<th>sCHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>0.004%</td>
<td>0.044%</td>
<td>0.33%</td>
</tr>
<tr>
<td></td>
<td>(0.001%–0.011%)</td>
<td>(0.026%–0.078%)</td>
<td>(0.21%–0.63%)</td>
</tr>
<tr>
<td>5–17</td>
<td>0.002%</td>
<td>0.019%</td>
<td>0.11%</td>
</tr>
<tr>
<td></td>
<td>(0.000%–0.004%)</td>
<td>(0.013%–0.027%)</td>
<td>(0.08%–0.18%)</td>
</tr>
<tr>
<td>18–64</td>
<td>0.010%</td>
<td>0.029%</td>
<td>0.15%</td>
</tr>
<tr>
<td></td>
<td>(0.007%–0.016%)</td>
<td>(0.021%–0.040%)</td>
<td>(0.11%–0.25%)</td>
</tr>
<tr>
<td>65+</td>
<td>0.010%</td>
<td>0.030%</td>
<td>0.16%</td>
</tr>
<tr>
<td></td>
<td>(0.003%–0.025%)</td>
<td>(0.016%–0.055%)</td>
<td>(0.10%–0.30%)</td>
</tr>
<tr>
<td>Total</td>
<td>0.007%</td>
<td>0.028%</td>
<td>0.16%</td>
</tr>
<tr>
<td></td>
<td>(0.005%–0.009%)</td>
<td>(0.022%–0.035%)</td>
<td>(0.12%–0.26%)</td>
</tr>
</tbody>
</table>

Table: Posterior median (95% CI) estimates of the sCFR, sCIR, and sCHR, by age group, using self-reported ILI as the denominator of symptomatic cases.
Discussion: Limitations

- imperfect detection and reporting cases
- small sample size in some age groups (in particular the 65+ age group)
- detection probabilities are time dependent
- assumption that for each level of severity case reporting was equal across age groups
- \(\text{sCFR, sCIR and sCHR are dependent on the true number of symptomatic cases } N_{iSk} \), prior assumptions and the detection probabilities
- there could be a shift from the younger to older groups in whom infection is more severe
Estimates for the June 2009 - February 2010 H1N1 wave in England

- same author A.M. Presanis did similar study in England about changes in severity of 2009 pandemic H1N1 influenza [Presanis et al., 2011]
- the symptomatic cases of the data were used to compare it with the estimates in the US
Estimates for the June 2009 - February 2010 H1N1 wave in England (II)

<table>
<thead>
<tr>
<th></th>
<th>Appr 1</th>
<th>Appr 2</th>
<th>UK Jun-Aug</th>
<th>UK Sep-Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCHR</td>
<td>1.44</td>
<td>0.16</td>
<td>0.54</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>(0.83-2.64)</td>
<td>(0.12-0.26)</td>
<td>(0.33-0.82)</td>
<td>(0.28-0.89)</td>
</tr>
<tr>
<td>sCIR</td>
<td>0.239</td>
<td>0.028</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>(0.134-0.458)</td>
<td>(0.022-0.035)</td>
<td>(0.03-0.08)</td>
<td>(0.05-0.16)</td>
</tr>
<tr>
<td>sCFR</td>
<td>0.048</td>
<td>0.007</td>
<td>0.015</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>(0.026-0.096)</td>
<td>(0.005-0.009)</td>
<td>(0.010-0.022)</td>
<td>(0.013-0.040)</td>
</tr>
</tbody>
</table>

Table: Posterior median (95% CI) estimates of the sCFR, sCIR, and sCHR for both approaches and the two waves of H1N1 in England.
estimations of an autumn-winter pandemic wave in the US compared to seasonal influenza:

- less or equal death toll
- possible more deaths in younger persons (18-64)

Approach 1:
- increase of ill individuals
 -> the burden on hospitals could be large

Approach 2:
- estimates of hospitalizations and ICU admissions are possible lower
estimations of an autumn-winter pandemic wave in the US compared to seasonal influenza:

- less or equal death toll
- possible more deaths in younger persons
- Approach 1: increase of ill individuals
 -> the burden on hospitals could be large
- Approach 2: estimates of hospitalizations and ICU admissions are possible lower

experienced and established frameworks are necessary:

- for robust estimates of severities
- to interpret data as quickly as possible
Thank you for your attention

Changes in severity of 2009 pandemic a/h1n1 influenza in england: a bayesian evidence synthesis.

BMJ, 343:d5408.

The Severity of Pandemic H1N1 Influenza in the United States, from April to July 2009: A Bayesian Analysis.

Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April-July 2009.