Compulsory Modules

The coursework part of the compulsory modules provides knowledge of the core methods of biostatistics and gives a first experience in applying and extending these. Lectures are in general completed by exercises (LE) and hours per week are divided into lecture and exercise part (e.g. 2+1). The following table shows the current requirements.

Likelihood & Regression I LE 2+1 + 1 lab 7 CP Fall semester
Clinical Biostatistics LE 2+1 + 1 lab 7 CP Fall semester
Good Statistical Practice flipped classroom 4 CP Fall semester
Likelihood & Regression II LE 2+1 + 1 lab 4 CP Spring semester (half-term)
Statistical Methods in Epidemiology LE 2+1 5 CP Spring semester
Biostatistics Journal Club Seminar 4 CP Spring semester
Statistical Practice in Clinical Research Project 6 CP Every semester (requires Clinical Biostatistics)
Master's Thesis   30 CP  
Master Exam   3 CP  
   

Likelihood & Regression I

Basics of statistical inference, including an introduction to the concept of likelihood and the discussion of likelihood functions of a large variety of statistical models, properties of maximum likelihood estimates, standard errors, score functions and Fisher information. Tests and confidence intervals based on the Wald, Score, and Likelihood Ratio statistics. Likelihood concepts are applied to simple regression problems, starting with the two-sample problem where different concepts of comparing distributions and corresponding parameterisations are discussed. Models for simple and multiple regression for binary, ordered, count, or continuous outcomes are introduced, including generalised regression and transformation models. Model residuals and model generalisations, such as distribution regression, are introduced mainly as devices for model criticism.

Clinical Biostatistics

Uncertainty is the rule in medicine and the science of managing medical uncertainty is biostatistics. The aim of the lecture "Clinical Biostatistics" is to give students an introduction to the most important statistical methods used in different areas of clinical research. First, quantifying clinical measurement error is central to the analysis of diagnostic studies and the assessment of agreement. Second, the randomized controlled trial (RCT) is the key concept to assess therapy, and advanced statistical methods are used in the design, implementation and analysis of RCTs. Finally, techniques for meta- analysis will be discussed. The following topics will be addressed: Confidence intervals for proportions, analysis of diagnostic studies, ROC curves, analysis of agreement, randomized controlled trials, hypothesis tests and sample size calculation, randomization and blinding, analysis of continuous and binary outcomes, multiplicity, subgroup analysis, protocol deviations, some special designs (crossover, equivalence, and cluster-randomized trials), principles of survival analysis, meta-analysis.

  • Matthews, J. N. S. (2006). Introduction to Randomized Controlled Clinical Trials. Chapman & Hall/CRC Texts in Statistical Science.
  • Pepe, M. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press

Good Statistical Practice

The module "Good Statistical Practice" introduces students to the specific concepts of research integrity that are related to the practice of statistics. This includes ethical principles of statistical practice, reproducibility, good written, visual and oral communication, good computational practice and computational efficiency. Besides theoretical insights into the foundations of statistical practice students acquire practical skills using modern computational tools (e.g. dynamic reporting, version control, containerization), they practice effective presentations and report writing of statistical results and they start to learn about general programming techniques (e.g. unit tests, debugging, job scripting, parallelization). The module provides insights and practical tools that are useful throughout the curriculum of the master program in biostatistics or other programs focused on quantitative research. It is taught in a flipped classroom setting: students are required to learn about concepts using provided material and complete assignments before an in-person session. Assignments and the in-person session contain peer and staff feedback and assessment.

Likelihood and Regression II

Concepts developed in Part I are applied to the analysis of censored outcomes. Interval-, left-, and right-censoring as well as the concept of truncation are introduced and corresponding formulations of the likelihood discussed. Transformation models, such as proportional hazards or proportional odds models, for the analysis of right-censored observations are recapitulated from Part I. Time-varying effect models, frailty models, cure models, and competing risk approaches complete the treatment of models for censored outcomes.

Statistical Methods in Epidemiology

We focus on the statistical analysis of health data which are collected in observational settings such as case-control or cohort studies. The most relevant measures of effect (risk, odds and rate ratios) are introduced, and methods for adjusting for confounders (Mantel-Haenszel and regression approaches) are thoroughly discussed. Specialized methods such as propensity score adjustments and conditional logistic regression are introduced for the analysis of matched data. Advanced topics such as causal inference with graphical models, imputation and measurement error and are also covered.

  • Jewell, N. P. (2004): Statistics for Epidemiology. Chapman & Hall/CRC.
  • Faraway, J. (2016): Extending the Linear Model with R. Chapman & Hall/CRC.

Biostatistics Journal Club

In the Biostatistics Journal Club biostatistical aspects of recent research papers or monographs are presented by each of the students and discussed together. All students together write a manuscript containing short summaries of all presentations.

Statistical Practice in Clinical Research

For the Statistical Practice in Clinical Research module students will work under supervision on selected projects from the Clinical Research Methods of the Division of the Biostatistics Department, they will write a reproducible report and present the results orally (see examples here).

Master's Thesis

The master’s thesis is an independent research activity, which can, for example, be in the framework of an integrative project involving participants from other disciplines. It involves approximately a full-time 6 month workload and is concluded by a written report. A professor, who defines the subject and specifies the submission date, supervises the thesis. It is advisable to start choosing a topic for the master’s thesis in the second semester and to complete all compulsory coursework and as much elective coursework as possible before the thesis. See abstracts of examples here and a list of thesis titles here.

Master Exam

The master’s exam consists of an oral presentation of the master’s thesis followed by questions from an expert audience including the supervisor. The student needs to show the ability to clearly present the relevance of the thesis and to defend it in view of critical questions.